Nano-structured Thermoelectric Materials

8t Diesel Engine Emissions Reduction Conference
Loews Coronado Bay Resort
'::' - ‘:’:}an Diego, CA
&, August 25,2002
L &

s
.~
-

bramanian

FRTI

INTERNATIONAL



Outline

* Introduction — Relevance to CFC-free Air-
conditioning in Automobiles, Energy
Conservation and Emissions Reduction

» Advantages of Technology and Thin-film
Cooling Examples

 Thin-film Power Conversion Examples
« Major Outstanding Issues for Research

« Emerging Thin-film TE Technology
Applications



Why Thermoelectrics?

. Converts electrical and thermal energy using a solid state
device with minimal moving parts
:-"' .@_hip-'s'cale functionality with thin-film materials using
stahdard microelectronic processing

o &

o ;Qb_mputer Chip, Photonic Chip, Lab-on-a-Chip

- .G‘reeh Technology — CFC-free refrigeration to waste-heat
“*.Irecovery for fuel efficiency
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Thermoelectric Effect
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 Cooling or Power
Conversion Efficiency
critically dependent on
the material Figure of
Merit (ZT)

« ZT = (a?0/K)T

* Minimize thermal
conductivity and
maximize electrical
conductivity



ZT and COP of Refrigerator or Air-Conditioner
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Bulk Bi,Te;-alloy Thermoelectric Devices

Bi,Te,/Sh,Te, Superlattice
Thermoelectric Devices
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Higher ZT — Incentives for New Approaches to
Implementing Higher COP Concepts



Thermal-to-Electrical

Implications for Power

High-density, light-weight
Higher efficiency

Replace Batteries
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Thermal scavenging
for remote power




THERMOELECTRIC TECHNOLOGIES in 1992
Fort Belvoir Workshop Organized by Dr. Stuart Horn

&
¢ With Advanced Semiconductor
o 1960’
Y. & & ¢ Semiconductor Materials
: v e 4 Technology

Materials Technology @

» /T - figure of merit - has been stagnant at about 0.8 to 1 for the
last 40 years - cooling and power conversion efficiencies low -
useful only in applications where you really need it

« Z'T need to improve over 1.5 at 300K for a major impact in
electronics and around 2 to 2.5 for a revolutionary impact in air-
conditioning, and power from waste-heat



Some of the Bulk Material and Thin-film

Developments
@ Cs Bi,Te, (Michigan State University)

y .+, ® Bulk Materials with a ZT~ 0.8 at 225K but less than 0.8 at
'+ »300K (Science 287, 1024-1027, 2000)

“/«® Filled Skuterrudites (JPL)

7 ®:Bulk materials with a ZT ~1.35 at 900K (Proc. Of 15t
.+, Jnternational Conf. On Thermoelectrics, 1996)

£ 0 PbTe/PbTeSe Quantum-dots (MIT Lincoln Labs.)

®/T~2 at 550K and ZT~0.8 at 300K based on estimated
thermal conductivity values (J. Electronic Materials, 29, L1 ,
2000)

€ Bi,Te,/Sb,Te, Superlattices (RTT)

®/T~2.4 at 300K 1n devices with all properties measured at the
same place, same time, with current flowing and verified by two
independent techniques (Nature, 597-602, 2001)



Y Thermoelectrics
Research

Breakthrough Multiple
Nanotechnology Applications
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RTI's Nano-structured Superlattice Material

Applied Physics Letters,

75, 1104 (1999)

Structure

= Optimized for
disrupting heat
transport while
enhancing electron
transport perpendicular
to the superlattice
interfaces



MOCVD Growth of Superlattices
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= Low-temperature technology and scaleable for large areas

= |n-situ ellipsometry for nanometer-scale control of deposition



RTI's Superlattice Material

. 12 nanometer

The RTI breakthrough arises from reducing heat
transmission without disrupting electron flow
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RTI's Superlattice Material

= Bi,Te,

J Sb,Te,
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